Wow

So, I sort of pride myself on being the type of teacher who creates an environment in his classroom where conversations can flow. I have my kiddos at two large tables where they are elbow to elbow and talk regularly. Sometimes, of course, the conversation strays – bit there are often rich math conversations going on. I posted this quick story over at One Good Thing, but I want to share it here as well.

I presented my BC class (all in their second year of High School Calculus) with the equation of an ellipse centered at the origin and asked the following rather vague question – “Are there any two points on this curve where the lines tangent to the curve are perpendicular?” One girl, Chloe, immediately answered that the tangent ‘on top’ of the graph was horizontal and it would be perpendicular to the tangent on the ‘side of the graph’ which is vertical. I congratulated her and challenged the class to find some other more interesting points. A student asked what the slopes of these more interesting lines might be and then a boy, Sal, chimed in that any number you pick must be the slope of a line tangent to this ellipse. His argument was based on recognizing that between the two tangents that Chloe had mentioned the slopes range from 0 to positive infinity. In other quadrant the slope would range from 0 to negative infinity. If he had mentioned the intermediate value theorem I might have fainted on the spot from joy.

After I posted the story to One Good Thing I read Ben Blum-Smith’s most recent posting (http://researchinpractice.wordpress.com/2013/09/08/kids-summarizing/) and I now realize what an opportunity I missed by simply congratulating Sal instead of getting others to join in and complete the thought process. Read Ben’s post. You’ll be glad you did. I intend to try and incorporate this strategy into my daily practice.